You are here: Start » Deep Learning Installation

Deep Learning Installation


  1. Installation guide
  2. Adaptive Vision Deep Learning Library and Filters
  3. Adaptive Vision Deep Learning Service
  4. Adaptive Vision Deep Learning Examples
  5. Adaptive Vision Deep Learning Standalone Editor
  6. Logging
  7. References

Installation guide

To use Deep Learning Filters, Library or Service with Adaptive Vision Studio or Adaptive Vision Library, a corresponding version of Adaptive Vision Deep Learning must be installed (the best idea is to use the newest versions of both from our website). Before installation, please check your hardware configuration.

Deep Learning is available in two versions:

  • GPU version (recommended) - version working with CUDA GPU acceleration. Much faster than CPU counterpart.
  • CPU version - uses only CPU, GPU is not required and used. Relatively slow, especially during training phase.


  • Graphics card compatible with CUDA toolkit. List of compatible devices can be found on this website (all CUDA devices with "Compute Capability" greater than or equal 3.5 and less than or equal 8.6). Minimum 2 GB of graphic memory is recommended. Display Driver with at least 456.81 version is required (recommended latest display driver version).
  • At least 3.5 GB disk space for program files, SSD recommended.
  • At least 8 GB RAM memory.
  • 64-bit processor, Intel i5, i7 or better are recommended. AVX support is required.
  • Windows 7, 8 or 10.

Known issues

If you are getting Access Denied errors during updating (or uninstalling), close all processes that may use previously installed Deep Learning files, like programs that need Deep Learning Library, Adaptive Vision Studio, Adaptive Vision Executor and so on.

Adaptive Vision Deep Learning Library and Filters

Adaptive Vision Deep Learning provides Filters for usage in Adaptive Vision Studio in 64-bit version. 32-bit version is not supported.

Adaptive Vision Deep Learning also provides Library (with Training Api) in 64-bit version (32-bit version is not supported). It is installed in Library subdirectory of main installation directory. It contains more subfolders:

  • bin/x64 – a directory containing DLL file (AVLDL.dll) for 64-bit applications written in C++. This library is common for all supported versions of Microsoft Visual Studio and for Debug|Release configurations. This directory also contains AvlDl.Net.dll file (along with its documentation in AvlDl.Net.xml file), which is .Net wrapper for AVLDL.dll.
  • include – a directory containing all header (.h) files for Library (AVLDL.h) and Training Api (Api.h).
  • lib/x64 – a directory containing import library (AVLDL.lib) for 64-bit applications. This file needs to be linked into a program that uses Library or Training Api as it serves as intermediary to AVLDL.dll.

Installer sets environment variable named AVLDL_PATH5_1 containing path to Library subdirectory. Exemplary use of AVLDL_PATH5_1 is presented in C++ examples distributed with Adaptive Vision Deep Learning.

Adaptive Vision Deep Learning Service

The Service is installed into Service subdirectory in main installation directory. After starting the Service, a new icon should be displayed in system tray.

The Service icon can be displayed in three colors, indicating the Service status:

  • Red - Service is starting or an error has occurred;
  • Yellow - Service is ready to accept clients;
  • Green - client is connected.

Running filters does not require working Service (this is even discouraged). Training always require running Service, regardless of tool.

Please note: to open the Deep Learning Editor, place a relevant Deep Learning filter (DL_DetectFeatures, DL_ClassifyObject, DL_LocatePoints, DL_DetectAnomalies1, DL_DetectAnomalies2 or DL_SegmentInstances) in the Program Editor, go to its Properties and click on the icon next to inModelId.ModelDirectory parameter.

Alternatively, to open Deep Learning Editor from DL_*_Deploy filter (DL_DetectFeatures_Deploy, DL_ClassifyObject_Deploy, DL_LocatePoints_Deploy, DL_DetectAnomalies1_Deploy, DL_DetectAnomalies2_Deploy or DL_SegmentInstances_Deploy), go to its Properties and click on the icon next to inModelDirectory parameter.

Adaptive Vision Deep Learning Examples

Examples are installed only if corresponding component has been selected during installation.

Examples for Adaptive Vision Studio are installed into %ProgramData%/Adaptive Vision/Adaptive Vision Studio 5.1 Professional/Examples directory. It means that they are located next to other Studio examples, which simplifies opening them from Studio. All Deep Learning Examples are prefixed with "Deep Learning".

Examples using Adaptive Vision Deep Learning Library and Training Api are located in the Public Documents system folder (e.g. C:\Users\Public\Documents\Adaptive Vision Deep Learning 5.1\Examples on Windows 10). Shortcut to this directory can be found in the Start Menu after the installation.

Adaptive Vision Deep Learning Standalone Editor

Standalone Deep Learning comes in both runtime and professional version installers. It can be very useful to performing training on client site.

Standalone Editor can be executed using command line with following parameters:

DeepLearningEditor.exe path [--alwaysOnTop] [--disableChangingLocation] [--language "language-code"]


  • path - path to directory with Deep Learning model,
  • --alwaysOnTop (optional) - setting this flag does not allow Deep Learning Editor to be covered by other windows.
  • --disableChangingLocation (optional) - user cannot change the model path from the editor.
  • --language (optional) - language to be used in the editor. Possible values "en","de","ja","pl","zh_hans","zh_hant".

Standalone editor can be started using additional HMI controls or Execute filter.


Deep Learning Service and Filters logs some information during execution to several files, located at %LocalAppData%/Adaptive Vision/Adaptive Vision Deep Learning 5.1 directory. Total disk space used by these files should not exceed several MB. Files older than a couple of days are automatically deleted. More information are provided in the documentation of DL_ConfigureLogging filter.

If this disk space requirement is unacceptable, Service can be executed in "minimal logging" mode. This can be achieved by running run_service_minimal_logging.bat script, located at Service installation folder. Note, that it will not lead to any observable performance improvement.

See documentation for DL_ConfigureLogging function for an extended information about logging in Deep Learning Library.

See also:

Previous: Creating Deep Learning Model Next: C++ Project Configuration