AvsFilter_DL_LocatePoints


Header: AVL.h
Namespace: avl
Module: DL_LP

Executes a Locate Points model on a single input image.

Syntax

void avl::AvsFilter_DL_LocatePoints
(
	const avl::Image& inImage,
	atl::Optional<const avl::Region&> inRoi,
	const avl::LocatePointsModelId& inModelId,
	const float inMinDetectionScore,
	const atl::Optional<float>& inMinDistanceRatio,
	const bool inOverlap,
	atl::Array<avl::Location>& outLocations,
	atl::Array<int>& outClassIds,
	atl::Array<atl::String>& outClassNames,
	atl::Array<float>& outScores
)

Parameters

Name Type Range Default Description
Input value inImage const Image& Input image
Input value inRoi Optional<const Region&> NIL Limits the area where points may be located
Input value inModelId const LocatePointsModelId& Identifier of a Locate Points model
Input value inMinDetectionScore const float 0.0 - 1.0 0.5f Sets a minimum required score for a point to be returned
Input value inMinDistanceRatio const Optional<float>& 0.01 - 1.0 NIL Sets a minimum distance between the returned points defined as a portion of the Feature Size. If not set, a value determined during the training is used
Input value inOverlap const bool True Cuts the image into more overlapping tiles, which improves results quality at the expense of extended execution time
Output value outLocations Array<Location>& Returns location of the found points
Output value outClassIds Array<int>& Returns ids of the found point classes
Output value outClassNames Array<String>& Returns names of the found point classes
Output value outScores Array<float>& Returns scores of the found points

Requirements

For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.

Read more about pixel formats in Image documentation.

Hints

  • It is recommended that the deep learning model is deployed with AvsFilter_DL_LocatePoints_Deploy first and connected through the inModelId input.
  • If one decides not to use AvsFilter_DL_LocatePoints_Deploy, then the model will be loaded in the first iteration. It will take up to several seconds.
  • Use inOverlap=False to increase execution speed at a cost of lower precision of results.

Remarks

This filter should not be executed along with running Deep Learning Service as it may result in degraded performance or even out-of-memory errors.

Errors

List of possible exceptions:

Error type Description
DomainError Not supported inImage pixel format in AvsFilter_DL_LocatePoints. Supported formats: 1xUInt8, 3xUInt8.

See Also

  • Models for Deep Learning may be created using Aurora Vision Deep Learning Editor or using Training Api (C++ based API Training is available in 5.3 and older versions only).

    For more information, see Machine Vision Guide.