Back to Aurora Vision Library website

You are here: Start » Function Reference » Computer Vision » 1D Edge Detection 3D » ScanExactlyNEdges3D_Direct

ScanExactlyNEdges3D_Direct


Header: AVL.h
Namespace: avl
Module: Vision3DStandard

Locates a specified number of the strongest changes of surface height along a given path.

Syntax

C++
C#
 
void avl::ScanExactlyNEdges3D_Direct
(
	const avl::Surface& inSurface,
	const avl::Path& inScanPath,
	atl::Optional<const avl::CoordinateSystem2D&> inScanPathAlignment,
	atl::Optional<float> inSamplingStep,
	int inScanWidth,
	avl::InterpolationMethod::Type inSurfaceInterpolation,
	const avl::EdgeScanParams3D& inEdgeScanParams,
	int inEdgeCount,
	avl::Selection::Type inEdgeSelection,
	float inMinDistance,
	atl::Optional<float> inMaxDistance,
	atl::Optional<const avl::LocalBlindness&> inLocalBlindness,
	atl::Optional<int> inMaxProfileGapWidth,
	atl::Conditional<atl::Array<avl::SurfaceEdge1D> >& outEdges,
	atl::Optional<avl::Path&> outAlignedScanPath = atl::NIL,
	atl::Optional<avl::Profile&> outHeightProfile = atl::NIL,
	atl::Optional<avl::Profile&> outResponseProfile = atl::NIL,
	atl::Array<avl::Path>& diagSamplingPoints,
	float& diagSamplingStep
)

Parameters

Name Type Range Default Description
Input value inSurface const Surface& Input surface
Input value inScanPath const Path& Path along which the scan is performed
Input value inScanPathAlignment Optional<const CoordinateSystem2D&> NIL Adjusts the scan path to the position of the inspected object
Input value inSamplingStep Optional<float> 0.0 - NIL Distance between consecutive sampling points on the scan path; if Nil, the bigger of surface X and Y scales is chosen
Input value inScanWidth int 1 - 5 Width of the scan field in pixels
Input value inSurfaceInterpolation InterpolationMethod::Type Bilinear Interpolation method used for extraction of surface points
Input value inEdgeScanParams const EdgeScanParams3D& EdgeScanParams3D ( ProfileInterpolation: Quadratic4 SmoothingStdDev: 0.6f MinMagnitude: 5.0f EdgeTransition: LowToHigh ) Parameters controlling the surface edge extraction process
Input value inEdgeCount int 0 - 1 Number of surface edges to be found
Input value inEdgeSelection Selection::Type Selection mode of the resulting edges
Input value inMinDistance float 0.0 - 0.0f Minimal distance between consecutive edges
Input value inMaxDistance Optional<float> 0.0 - NIL Maximal distance between consecutive edges
Input value inLocalBlindness Optional<const LocalBlindness&> NIL Defines conditions in which weaker edges can be detected in the vicinity of stronger edges
Input value inMaxProfileGapWidth Optional<int> 0 - 1 Maximal number of consecutive not existing profile points
Output value outEdges Conditional<Array<SurfaceEdge1D> >& Found surface edges
Output value outAlignedScanPath Optional<Path&> NIL Path along which the scan is performed; in the image coordinate system
Output value outHeightProfile Optional<Profile&> NIL Extracted surface height profile
Output value outResponseProfile Optional<Profile&> NIL Profile of the edge (derivative) operator response
Diagnostic input diagSamplingPoints Array<Path>& Array of paths each one containing the sampling points that contributed to a single value of the extracted profile; in the image coordinate system
Diagnostic input diagSamplingStep float& Used distance between consecutive sampling points on the scan path

Optional Outputs

The computation of following outputs can be switched off by passing value atl::NIL to these parameters: outAlignedScanPath, outHeightProfile, outResponseProfile.

Read more about Optional Outputs.

Description

The operation scans the surface along inScanPath and finds a set of inEdgeCount surface edges perpendicular to the path. If no subset (of inEdgeCount elements) of detected edges meets the requirements of inEdgeScanParams.minMagnitude, inMinDistance, inEdgeScanParams.edgeTransition then the outputs are set to NIL.

The optional parameter inScanPathAlignment defines a transform to be performed on the inScanPath so that the actual scan path (outAlignedScanPath) is adjusted to the position of the object.

Note that in case of a scan path which is closed, the parameters controlling the distances between consecutive found objects do not control the distance between the first and the last of the found objects (counting from the beginning of the scan path).

The operation is very similar to ScanExactlyNEdges_Direct from 1D Edge Detection category, but there are some substantial differences. One of these is the possibility of absence of information, because some surface points may not exist at all. To detect such edges, where solely change of existence matters, Valid/Invalid options of inEdgeScanParams.EdgeTransition can be used. Outside the surface domain (i.e. rectangle defined by input surface width, height, offsets and scales) there are no valid or invalid points, so no edge can be found in the direct vicinity of the domain border.

Because in the Valid/Invalid mode all edges have equal strength, if inEdgeSelection is set to Best, it will be implicitly substituted with First selection option.

Please note that when the input surface has unequal scales along X and Y axes and the scan path is not parallel to any of the axes, the results may be slightly less accurate because of uneven sampling along axes.

Hints

  • Set inEdgeCount to the number of edges that are to be found (the N number).
  • Define inEdgeScanParams.EdgeTransition to detect a particular edge type, and only that type.
  • If the expected number of edges cannot be found, try decreasing inEdgeScanParams.MinMagnitude. Verify this with the values on the outResponseProfile output.
  • If consecutive edges are closer than 6 pixels apart, change inEdgeScanParams.ProfileInterpolation to Quadratic3.
  • Adjust inMinDistance (in surface coordinates) to filter out false edges that appear in proximity to other edges.

Remarks

Read more about Local Coordinate Systems in Machine Vision Guide: Local Coordinate Systems.

See Also

  • CreateSurfaceScanMap – Precomputes a data object that is required for fast 1D edge detection in 3D.
  • ScanExactlyNEdges3D – Locates a specified number of the strongest changes of surface height along a given path.