
AvsFilter_DL_DetectAnomalies2
Header: | AVL.h |
---|---|
Namespace: | avl |
Module: | DL_DA |
Executes a Detect Anomalies 2 model on a single input image.
Syntax
void avl::AvsFilter_DL_DetectAnomalies2 ( const avl::Image& inImage, atl::Optional<const avl::Rectangle2D&> inRoi, atl::Optional<const avl::CoordinateSystem2D&> inRoiAlignment, const avl::DetectAnomalies2ModelId& inModelId, const float inScoreScale, avl::Heatmap& outHeatmap, bool& outIsValid, float& outScore, bool& outIsConfident, float& outT1, float& outT2, atl::Conditional<avl::Region>& outCommonRoi, atl::Optional<avl::Rectangle2D&> outAlignedRoi = atl::NIL )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() |
inImage | const Image& | Input image | ||
![]() |
inRoi | Optional<const Rectangle2D&> | NIL | Limits the area where a classified object is located | |
![]() |
inRoiAlignment | Optional<const CoordinateSystem2D&> | NIL | ||
![]() |
inModelId | const DetectAnomalies2ModelId& | Identifier of a Detect Anomalies 2 model | ||
![]() |
inScoreScale | const float | 0.5 - 1.5 | 1.0f | Scale factor for T1 and T2 (default value results in usage of T1 and T2 from model) |
![]() |
outHeatmap | Heatmap& | Returns a heatmap indicating found anomalies | ||
![]() |
outIsValid | bool& | Returns true if no anomalies were found | ||
![]() |
outScore | float& | Returns score of the image | ||
![]() |
outIsConfident | bool& | Returns false if the score is between T1 and T2 | ||
![]() |
outT1 | float& | Returns T1 'Good' threshold value | ||
![]() |
outT2 | float& | Returns T2 'Bad' threshold value | ||
![]() |
outCommonRoi | Conditional<Region>& | ROI used in training | ||
![]() |
outAlignedRoi | Optional<Rectangle2D&> | NIL | Input roi after the transformation |
Requirements
For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.
Read more about pixel formats in Image documentation.
Optional Outputs
The computation of following outputs can be switched off by passing value atl::NIL
to these parameters: outAlignedRoi.
Read more about Optional Outputs.
Hints
- It is recommended that the deep learning model is deployed with AvsFilter_DL_DetectAnomalies2_Deploy first and connected through the inModelId input.
- If one decides not to use AvsFilter_DL_DetectAnomalies2_Deploy, then the model will be loaded in the first iteration. It will take up to several seconds.
Remarks

This article concerns the functionalities related to another product: Deep Learning Add-on.
This filter should not be executed along with running Deep Learning Service as it may result in degraded performance or even out-of-memory errors.
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Not supported inImage pixel format in AvsFilter_DL_DetectAnomalies2. Supported formats: 1xUInt8, 3xUInt8. |
See Also
Models for Deep Learning may be created using Aurora Vision Deep Learning Editor or using Training Api (C++ based API Training is available in 5.3 and older versions only).
For more information, see Machine Vision Guide.