AvsFilter_DL_DetectAnomalies2


Header: AVL.h
Namespace: avl
Module: DL_DA

Executes a Detect Anomalies 2 model on a single input image.

Syntax

void avl::AvsFilter_DL_DetectAnomalies2
(
	const avl::Image& inImage,
	atl::Optional<const avl::Rectangle2D&> inRoi,
	atl::Optional<const avl::CoordinateSystem2D&> inRoiAlignment,
	const avl::DetectAnomalies2ModelId& inModelId,
	const float inScoreScale,
	avl::Heatmap& outHeatmap,
	bool& outIsValid,
	float& outScore,
	bool& outIsConfident,
	float& outT1,
	float& outT2,
	atl::Conditional<avl::Region>& outCommonRoi,
	atl::Optional<avl::Rectangle2D&> outAlignedRoi = atl::NIL
)

Parameters

Name Type Range Default Description
Input value inImage const Image& Input image
Input value inRoi Optional<const Rectangle2D&> NIL Limits the area where a classified object is located
Input value inRoiAlignment Optional<const CoordinateSystem2D&> NIL
Input value inModelId const DetectAnomalies2ModelId& Identifier of a Detect Anomalies 2 model
Input value inScoreScale const float 0.5 - 1.5 1.0f Scale factor for T1 and T2 (default value results in usage of T1 and T2 from model)
Output value outHeatmap Heatmap& Returns a heatmap indicating found anomalies
Output value outIsValid bool& Returns true if no anomalies were found
Output value outScore float& Returns score of the image
Output value outIsConfident bool& Returns false if the score is between T1 and T2
Output value outT1 float& Returns T1 'Good' threshold value
Output value outT2 float& Returns T2 'Bad' threshold value
Output value outCommonRoi Conditional<Region>& ROI used in training
Output value outAlignedRoi Optional<Rectangle2D&> NIL Input roi after the transformation

Requirements

For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.

Read more about pixel formats in Image documentation.

Optional Outputs

The computation of following outputs can be switched off by passing value atl::NIL to these parameters: outAlignedRoi.

Read more about Optional Outputs.

Hints

Remarks

This product employs WEAVER

This article concerns the functionalities related to another product: Deep Learning Add-on.

This filter should not be executed along with running Deep Learning Service as it may result in degraded performance or even out-of-memory errors.

Errors

List of possible exceptions:

Error type Description
DomainError Not supported inImage pixel format in AvsFilter_DL_DetectAnomalies2. Supported formats: 1xUInt8, 3xUInt8.

See Also

  • Models for Deep Learning may be created using Aurora Vision Deep Learning Editor or using Training Api (C++ based API Training is available in 5.3 and older versions only).

    For more information, see Machine Vision Guide.