Back to Adaptive Vision Library website
You are here: Start » Function Reference » Deep Learning » DeepLearning_DetectFeatures
DeepLearning_DetectFeatures
Performs feature classification using trained deep-learning model.
Header: | AVL.h |
---|
Syntax
C++
C#
void avl::DeepLearning_DetectFeatures ( DeepLearningConnectionState& ioState, const avl::Image& inImage, const atl::Optional<avl::Region>& inRoi, const avl::DeepModel_FeatureDetection& inDeepModel, const bool& inOverlap, atl::Array<avl::Image>& outHeatmaps, atl::Optional<avl::Image&> outFeature1 = atl::NIL, atl::Optional<avl::Image&> outFeature2 = atl::NIL, atl::Optional<avl::Image&> outFeature3 = atl::NIL, atl::Optional<avl::Image&> outFeature4 = atl::NIL )
Parameters
Name | Type | Default | Description | |
---|---|---|---|---|
ioState | DeepLearningConnectionState& | Object used to maintain state of the function. | ||
inImage | const Image& | Input image | ||
inRoi | const Optional<Region>& | NIL | Area of interest | |
inDeepModel | const DeepModel_FeatureDetection& | Trained model | ||
inOverlap | const bool& | True | Add tiles overlapping to improve results quality | |
outHeatmaps | Array<Image>& | Returns heatmaps for all classes | ||
outFeature1 | Optional<Image&> | NIL | Returns heatmap for first feature class | |
outFeature2 | Optional<Image&> | NIL | Returns heatmap for second feature class or empty image if class is not specified | |
outFeature3 | Optional<Image&> | NIL | Returns heatmap for third feature class or empty image if class is not specified | |
outFeature4 | Optional<Image&> | NIL | Returns heatmap for fourth feature class or empty image if class is not specified |
Requirements
For input inImage only pixel formats are supported: 1xuint8, 3xuint8.
Read more about pixel formats in Image documentation.
Hints
Loading Deep Learning Model may take longer timer. Consider using DeepLearning_LoadModel for pre-loading model before execution starts.
Remarks
- Model provided on inDeepModel input will be loaded to service automatically on first usage of Deep Learning filters.
- Service automatically releases and loads model into its memory. It may result in releasing model previously loaded using DeepLearning_LoadModel filter.
- These filters only communicates with service and cannot be use for parallel computation.
Errors
Error type | Description |
---|---|
DomainError | Empty ROI region in DeepLearning_DetectFeatures |
DomainError | Size of ROI differs from size of image in DeepLearning_DetectFeatures |
DomainError | Invalid DeepModel in DeepLearning_DetectFeatures. |
DomainError | Empty image in DeepLearning_DetectFeatures. |
See Also
Models for Deep Learning may be created using Adaptive Vision Deep Learning Editor or using Training Api.