
AvsFilter_DL_DetectAnomalies1
Header: | AVL.h |
---|---|
Namespace: | avl |
Module: | DL_DA |
Executes a Detect Anomalies 1 model on a single input image.
Syntax
void avl::AvsFilter_DL_DetectAnomalies1 ( const avl::Image& inImage, const avl::DetectAnomalies1ModelId& inModelId, const bool inReconstruct, const float inScoreScale, avl::Heatmap& outHeatmap, bool& outIsValid, float& outScore, bool& outIsConfident, float& outT1, float& outT2, atl::Optional<avl::Image&> outReconstructedImage = atl::NIL )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() |
inImage | const Image& | Input image | ||
![]() |
inModelId | const DetectAnomalies1ModelId& | Identifier of a Detect Anomalies 1 model | ||
![]() |
inReconstruct | const bool | True | Enables computing a reconstructed image, which may extend execution time | |
![]() |
inScoreScale | const float | 0.5 - 1.5 | 1.0f | Scale factor for T1 and T2 (default value results in usage of T1 and T2 from model) |
![]() |
outHeatmap | Heatmap& | Returns a heatmap indicating found anomalies | ||
![]() |
outIsValid | bool& | Returns true if no anomalies were found | ||
![]() |
outScore | float& | Returns score of the image | ||
![]() |
outIsConfident | bool& | Returns false if the score is between T1 and T2 (inclusive) | ||
![]() |
outT1 | float& | Returns T1 'Good' threshold value | ||
![]() |
outT2 | float& | Returns T2 'Bad' threshold value | ||
![]() |
outReconstructedImage | Optional<Image&> | NIL | Returns the reconstructed image |
Requirements
For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.
Read more about pixel formats in Image documentation.
Optional Outputs
The computation of following outputs can be switched off by passing value atl::NIL
to these parameters: outReconstructedImage.
Read more about Optional Outputs.
Hints
- It is recommended that the deep learning model is deployed with AvsFilter_DL_DetectAnomalies1_Deploy first and connected through the inModelId input.
- If one decides not to use AvsFilter_DL_DetectAnomalies1_Deploy, then the model will be loaded in the first iteration. It will take up to several seconds.
Remarks

This article concerns the functionalities related to another product: Deep Learning Add-on.
This filter should not be executed along with running Deep Learning Service as it may result in degraded performance or even out-of-memory errors.
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Not supported inImage pixel format in AvsFilter_DL_DetectAnomalies1. Supported formats: 1xUInt8, 3xUInt8. |
See Also
Models for Deep Learning may be created using Aurora Vision Deep Learning Editor or using Training Api (C++ based API Training is available in 5.3 and older versions only).
For more information, see Machine Vision Guide.