You are here: Start » Filter Reference » Data Classification » Multilayer Perceptron » MLP_Init
| Module: | FoundationPro | 
|---|
Creates multilayer perceptron model.
| Name | Type | Range | Description | |
|---|---|---|---|---|
![]()  | 
				inHiddenLayers | IntegerArray* | Internal structure of MLP network | |
![]()  | 
				inActivationFunction | ActivationFunction | Type of activation function used to calculate neural response | |
![]()  | 
				inPreprocessing | MlpPreprocessing | Method of processing input data before learning | |
![]()  | 
				inRandomSeed | Integer* | 0 - ![]()  | 
				Number used as starting random seed | 
![]()  | 
				inInputCount | Integer | 1 - ![]()  | 
				MLP network input count | 
![]()  | 
				inOutputCount | Integer | 1 - ![]()  | 
				MLP network output count | 
![]()  | 
				outMlpModel | MlpModel | Initialized MlpModel | |
Description
Filter initializes and sets structure of the MlpModel.
		Image: Internal structure of MlpModel. Function f denotes the inActivationFunction.
Parameter inHiddenLayers represents number of neurons in consecutive hidden layers.
The parameter inActivationFunction is a function used to calculate internal neuron activation.
The weights of the multilayer perceptron are initialized by a random numbers. Their values depend on inRandomSeed value.
Parameters inInputCount and inOutputCount defines network inputs and outputs count.
Complexity Level
This filter is available on Expert Complexity Level.
See Also
- MLP_Train – Creates and trains multilayer perceptron classifier.
 
- MLP_Respond – Calculates multilayer perceptron answer.
 

 Expert

