Back to Aurora Vision Library website
You are here: Start » Function Reference » Data Classification » Regression Analysis » LinearRegression_LAD
LinearRegression_LAD
| Header: | AVL.h |
|---|---|
| Namespace: | avl |
| Module: | FoundationBasic |
Computes linear regression of given point set, using the L1 norm.
Syntax
C++
C#
void avl::LinearRegression_LAD ( const atl::Array<float>& inYValues, atl::Optional<const atl::Array<float> &> inXValues, int inIterationCount, float inLambda, avl::LinearFunction& outLinearFunction, atl::Array<float>& outEstimatedValues, atl::Array<float>& outResiduals, float& outRSquared )
Parameters
| Name | Type | Range | Default | Description | |
|---|---|---|---|---|---|
![]() |
inYValues | const Array<float>& | Sequence of ordinates | ||
![]() |
inXValues | Optional<const Array<float> &> | NIL | Sequence of abscissae, or {0, 1, 2, ...} by default | |
![]() |
inIterationCount | int | Number of iterations of outlier suppressing algorithm | ||
![]() |
inLambda | float | 0.0 - 1.0 | Coefficient of a running average in the iterations | |
![]() |
outLinearFunction | LinearFunction& | Linear function approximating the given point set | ||
![]() |
outEstimatedValues | Array<float>& | The result of application of the computed function to the X values | ||
![]() |
outResiduals | Array<float>& | Difference between an input Y value and the corresponding estimated value | ||
![]() |
outRSquared | float& | Coefficient of determination of output function |
Errors
List of possible exceptions:
| Error type | Description |
|---|---|
| DomainError | Inconsistent size of arrays in LinearRegression_LAD. |


