Back to Adaptive Vision Library website
You are here: Start » Function Reference » Regression Analysis » LinearRegression_M
LinearRegression_M
Computes linear regression of given point set using selected M-estimator for outlier suppression.
Syntax
C++
C#
void avl::LinearRegression_M ( const atl::Array<float>& inYValues, const atl::Optional<atl::Array<float> >& inXValues, avl::MEstimator::Type inOutlierSuppression, float inClippingFactor, int inIterationCount, atl::Optional<const avl::LinearFunction&> inInitialLinearFunction, avl::LinearFunction& outLinearFunction, atl::Array<float>& outEstimatedValues, atl::Array<float>& outResiduals )
Parameters
| Name | Type | Range | Default | Description | |
|---|---|---|---|---|---|
![]() |
inYValues | const Array<float>& | Sequence of ordinates | ||
![]() |
inXValues | const Optional<Array<float> >& | NIL | Sequence of abscissae, or {0, 1, 2, ...} by default | |
![]() |
inOutlierSuppression | MEstimator::Type | |||
![]() |
inClippingFactor | float | 0.675 - 6.0 | 2.5f | Multitude of standard deviation within which points are considered inliers |
![]() |
inIterationCount | int | 0 - ![]() |
5 | Number of iterations of outlier suppressing algorithm |
![]() |
inInitialLinearFunction | Optional<const LinearFunction&> | NIL | Initial approximation of the output linear function (if available) | |
![]() |
outLinearFunction | LinearFunction& | Linear function approximating the given point set | ||
![]() |
outEstimatedValues | Array<float>& | The result of application of the computed function to the X values | ||
![]() |
outResiduals | Array<float>& | Difference between an input Y value and the corresponding estimated value |
Errors
| Error type | Description |
|---|---|
| DomainError | Inconsistent size of arrays in LinearRegression_M. |



