Back to Adaptive Vision Library website
You are here: Start » Function Reference » Principal Component Analysis » ApplyPCATransform
ApplyPCATransform
Applies previously obtained Principal Component Analysis (PCA) transformation coefficients to new data.
Syntax
C++
C#
void avl::ApplyPCATransform ( const avl::Matrix& inMatrix, const avl::PCAModel& inPCAModel, avl::Matrix& outTransformedMatrix )
Parameters
| Name | Type | Default | Description | |
|---|---|---|---|---|
![]() |
inMatrix | const Matrix& | Input data with variables in columns and examples in rows. | |
![]() |
inPCAModel | const PCAModel& | Previously created PCA model to apply to data provided in inMatrix. | |
![]() |
outTransformedMatrix | Matrix& | Transformed inMatrix. |
Errors
| Error type | Description |
|---|---|
| DomainError | Malformed inPCAModel - MeanVector and StandardDeviationVector have to have the same length in ApplyPCATransform. |
| DomainError | Malformed inPCAModel - MeanVector and StandardDeviationVector are not row-vectors in ApplyPCATransform. |
| DomainError | PCAModel does not match - inMatrix column count does not match in ApplyPCATransform. |
| DomainError | PCAModel does not match - StandardDeviationVector length is different then inMatrix column count in ApplyPCATransform. |
| DomainError | PCAModel does not match - PCAFeatureVector dimensions does not correspond to inMatrix dimensions in ApplyPCATransform. |


