You are here: Start » AVL.NET » AVL.MLP_Init(int[], AvlNet.ActivationFunction, AvlNet.MlpPreprocessing, int?, int, int, AvlNet.MlpModel)

AVL.MLP_Init(int[], AvlNet.ActivationFunction, AvlNet.MlpPreprocessing, int?, int, int, AvlNet.MlpModel)

Creates multilayer perceptron model.

Namespace:AvlNet
Assembly:AVL.NET.dll

Syntax


public static void MLP_Init(
	int[] inHiddenLayers,
	AvlNet.ActivationFunction inActivationFunction,
	AvlNet.MlpPreprocessing inPreprocessing,
	int? inRandomSeed,
	int inInputCount,
	int inOutputCount,
	out AvlNet.MlpModel outMlpModel
)

Parameters

inHiddenLayers
Type: System.Int32
Internal structure of MLP network, or null.
inActivationFunction
Type: AvlNet.ActivationFunction
Type of activation function used to calculate neural response
inPreprocessing
Type: AvlNet.MlpPreprocessing
Method of processing input data before learning
inRandomSeed
Type: System.Nullable<System.Int32>
Number used as starting random seed, or null.
inInputCount
Type: System.Int32
MLP network input count
inOutputCount
Type: System.Int32
MLP network output count
outMlpModel
Type: AvlNet.MlpModel
Initialized MlpModel

Description

Filter initializes and sets structure of the MlpModel.

Image: Internal structure of MlpModel. Function f denotes the inActivationFunction.

Parameter inHiddenLayers represents number of neurons in consecutive hidden layers.

The parameter inActivationFunction is a function used to calculate internal neuron activation.

The weights of the multilayer perceptron are initialized by a random numbers. Their values depend on inRandomSeed value.

Parameters inInputCount and inOutputCount defines network inputs and outputs count.

See also