You are here: Start » AVL.NET » AVL.MLP_Init(int[], AvlNet.ActivationFunction, AvlNet.MlpPreprocessing, int?, int, int, AvlNet.MlpModel)
AVL.MLP_Init(int[], AvlNet.ActivationFunction, AvlNet.MlpPreprocessing, int?, int, int, AvlNet.MlpModel)
Creates multilayer perceptron model.
| Namespace: | AvlNet |
|---|---|
| Assembly: | AVL.NET.dll |
Syntax
public static void MLP_Init( int[] inHiddenLayers, AvlNet.ActivationFunction inActivationFunction, AvlNet.MlpPreprocessing inPreprocessing, int? inRandomSeed, int inInputCount, int inOutputCount, out AvlNet.MlpModel outMlpModel )
Parameters
- inHiddenLayers
- Type: System.Int32
Internal structure of MLP network, or null. - inActivationFunction
- Type: AvlNet.ActivationFunction
Type of activation function used to calculate neural response - inPreprocessing
- Type: AvlNet.MlpPreprocessing
Method of processing input data before learning - inRandomSeed
- Type: System.Nullable<System.Int32>
Number used as starting random seed, or null. - inInputCount
- Type: System.Int32
MLP network input count - inOutputCount
- Type: System.Int32
MLP network output count - outMlpModel
- Type: AvlNet.MlpModel
Initialized MlpModel
Description
Filter initializes and sets structure of the MlpModel.
Image: Internal structure of MlpModel. Function f denotes the inActivationFunction.
Parameter inHiddenLayers represents number of neurons in consecutive hidden layers.
The parameter inActivationFunction is a function used to calculate internal neuron activation.
The weights of the multilayer perceptron are initialized by a random numbers. Their values depend on inRandomSeed value.
Parameters inInputCount and inOutputCount defines network inputs and outputs count.
