DeepLearning_DetectAnomalies1
| Header: | AVLDL.h |
|---|---|
| Namespace: | avl |
Detects anomalies using trained deep-learning model.
Syntax
void avl::DeepLearning_DetectAnomalies1 ( const avl::Image& inImage, const avl::DeepModel_AnomalyDetection1& inDeepModel, const bool inComputeReconstruction, avl::Image& outHeatmap, bool& outIsValid, float& outScore, bool& outIsConfident, atl::Optional<avl::Image&> outReconstructedImage = atl::NIL )
Parameters
| Name | Type | Default | Description | |
|---|---|---|---|---|
![]() |
inImage | const Image& | Input image | |
![]() |
inDeepModel | const DeepModel_AnomalyDetection1& | Trained model | |
![]() |
inComputeReconstruction | const bool | True | |
![]() |
outHeatmap | Image& | Image contains heatmaps for each input image channel | |
![]() |
outIsValid | bool& | Returns true if anomaly was not found | |
![]() |
outScore | float& | Score of classification | |
![]() |
outIsConfident | bool& | Returns "false" if score is between T1 and T2 | |
![]() |
outReconstructedImage | Optional<Image&> | NIL | Returns network answer |
Requirements
For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.
Read more about pixel formats in Image documentation.
Optional Outputs
The computation of following outputs can be switched off by passing value atl::NIL to these parameters: outReconstructedImage.
Read more about Optional Outputs.
Hints
Loading Deep Learning Model may take longer timer. Consider using DeepLearning_LoadModel_AnomalyDetection1 for pre-loading model before execution starts.
Remarks
- Model provided on inDeepModel input will be loaded to service automatically on first usage of Deep Learning filters.
- These filters only communicates with service and cannot be use for parallel computation.
Errors
List of possible exceptions:
| Error type | Description |
|---|---|
| DomainError | Not supported inImage pixel format in DeepLearning_DetectAnomalies1. |
See Also
Models for Deep Learning may be created using Adaptive Vision Deep Learning Editor or using Training Api.


